Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293227

RESUMEN

The measurement of serum neurofilament light chain (sNfL) is of growing importance in the field of neurology. In the management of multiple sclerosis, it can serve as a useful marker to assess disease activity and treatment response. This paper compares two available methods, namely the Single Molecule Array (Simoa) and the Ella microfluid platform, to measure longitudinal sNfL levels of 42 highly active multiple sclerosis patients treated with alemtuzumab over a period of 36 months. In order to assess the methods agreement, Bland-Altman plots and Passing-Bablok regression were analyzed. Here, we show that despite the fact that Ella measures around 24% higher values than Simoa, both are equally suitable for longitudinal sNfL monitoring.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Filamentos Intermedios , Alemtuzumab , Proteínas de Neurofilamentos , Biomarcadores , Monitoreo Fisiológico
2.
Sci Rep ; 12(1): 963, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046492

RESUMEN

Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells' properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.


Asunto(s)
Citometría de Flujo/instrumentación , Técnicas Analíticas Microfluídicas , Redes Neurales de la Computación , Células Fotorreceptoras de Vertebrados/trasplante , Programas Informáticos , Animales , Agregación Celular , Citometría de Flujo/métodos , Ratones
3.
Elife ; 112022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35001870

RESUMEN

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.


Asunto(s)
Células/citología , Fluorescencia , Espacio Intracelular , Microscopía/métodos , Tomografía Óptica/métodos , Núcleo Celular , Células/ultraestructura , Células HeLa , Humanos , Refractometría
4.
Nat Methods ; 17(6): 595-599, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451476

RESUMEN

Although label-free cell sorting is desirable for providing pristine cells for further analysis or use, current approaches lack molecular specificity and speed. Here, we combine real-time fluorescence and deformability cytometry with sorting based on standing surface acoustic waves and transfer molecular specificity to image-based sorting using an efficient deep neural network. In addition to general performance, we demonstrate the utility of this method by sorting neutrophils from whole blood without labels.


Asunto(s)
Citometría de Flujo/métodos , Microfluídica/métodos , Redes Neurales de la Computación , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular , Drosophila/citología , Deformación Eritrocítica , Eritrocitos/citología , Células HL-60 , Humanos , Células Mieloides/citología , Neutrófilos/citología , Sonido
5.
Front Cell Neurosci ; 12: 358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356682

RESUMEN

Many molecular and cellular pathogenic mechanisms of neurodegenerative diseases have been revealed. However, it is unclear what role a putatively impaired neuronal transport with respect to altered mechanical properties of neurons play in the initiation and progression of such diseases. The biochemical aspects of intracellular axonal transport, which is important for molecular movements through the cytoplasm, e.g., mitochondrial movement, has already been studied. Interestingly, transport deficiencies are associated with the emergence of the affliction and potentially linked to disease transmission. Transport along the axon depends on the normal function of the neuronal cytoskeleton, which is also a major contributor to neuronal mechanical properties. By contrast, little attention has been paid to the mechanical properties of neurons and axons impaired by neurodegeneration, and of membraneless, phase-separated organelles such as stress granules (SGs) within neurons. Mechanical changes may indicate cytoskeleton reorganization and function, and thus give information about the transport and other system impairment. Nowadays, several techniques to investigate cellular mechanical properties are available. In this review, we discuss how select biophysical methods to probe material properties could contribute to the general understanding of mechanisms underlying neurodegenerative diseases.

6.
Inorg Chem ; 35(13): 3848-3855, 1996 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-11666574

RESUMEN

When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) Å, b = 9.160(9) Å, c = 12.280(9) Å, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) Å, b = 16.835(12) Å, c = 13.206(9) Å, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) Å, b = 9.158(8) Å, c = 12.353(8) Å, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) Å, c = 14.32(2) Å, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) Å, c = 14.318(14) Å, Z = 16) reveal the two compounds to be isostructural. The molecules have an inner Sn(4)M pentametallic core (mean distances: Sn-Ni 2.463 Å, Sn-Pd 2.544 Å) with the transition metal in the center of a slightly distorted square formed by the four tin atoms, the distortion from planarity resulting in a weak paramagnetism of 0.2 &mgr;(B) for the nickel compound. The halogen atoms form bridges between two of the tin atoms and have no bonding interaction with the transition metal. The nickel compound has also been prepared by direct interaction of Br(2) or NR(4)Br(3) with [Me(2)Si(NtBu)(2)Sn](4)Ni as a minor product, the main products being Me(2)Si(NtBu)(2)Sn(NtBu)(2)SiMe(2,) Me(2)Si(NtBu)(2)SnBr(2), NiBr(2) and SnBr(2). Other metal clusters have been obtained by the reaction of Me(2)Si(NtBu)(2)Sn with tetrakis(triphenyphosphine)palladium or by the reaction of Me(2)Si(NtBu)(2)Ge with RhCl(PPh(3))(3). In the first case Ph(3)PPd[Sn(NtBu)(2)SiMe(2)](3)PdPPh(3) (rhombohedral, space group R3c, a = b = 21.397(12) Å, c = 57.01(5) Å, alpha = beta = 90 degrees, gamma = 120 degrees, Z = 12) is formed and is characterized by X-ray techniques to be composed of a central PdSn(3)Pd trigonal bipyramid with the tin atoms occupying the equatorial positions (Pd-Sn = 2.702(5) Å). In the second reaction all the triphenylphosphine ligands are replaced from rhodium and Rh[Ge(NtBu)(2)SiMe(2)](4)Cl is formed (monoclinic, space group P2(1)/n, a = 12.164(2) Å, b = 23.625(5) Å, c = 24.128(5) Å, beta = 102.74(3) degrees, Z = 4). The central core of this molecule is made up of a rhodium atom which is almost square planarly coordinated by the germanium atoms, two of which are bridged by chlorine (mean Ge-Rh = 2.355 Å).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...